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I. INTRODUCTION 

Determination of the blood pressure waveform is of prime importance 

to both the medical practitioner and researcher. The methods of ob­

taining the blood pressure pulse fall into two general categories. First, 

the blood pressure pulse may be determined directly from the arterial 

system through intra-arterial means, this method is commonly referred to 

as the cannulation method. Secondly, the pressure pulse may be obtained 

through extra-arterial means. The purpose of this Thesis is to investi­

gate the determination of blood pressure waveforms by extra-arterial 

means. 

The historical background of the blood pressure pulse investigations 

will be reviewed. The hemodynamics of the blood system will be discussed 

and analysed as they apply to the extra-arterial determination of the 

pressure pulse. Various methods of determining the blood pressure pulse 

will be discussed. 

Also to be presented will be a method of blood pressure waveform de­

termination utilizing a resistive strain gage transducer and a fluid 

filled pickup in communication with the body surface. An analysis of the 

operation of the components of this system has been performed. The blood 

pressure pulse obtained by this system has been recorded for several con­

ditions and the results of these recordings will be discussed. 
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II. BLOOD PRESSURE WAVEFORM DETERMINATION 

A. Purpose of Blood Pressure Waveform Determination 

The blood pressure waveform of the arterial system can provide sig­

nificant information on the physical condition of the circulatory system. 

Wiggers (20) has shown that changes in the blood pressure waveforms from 

the established normal waveform can be attributed to disorders in the 

circulatory system, either in the heart or the vascular sub-system. Ab­

normal ventricular contractions in the heart will cause the pulse curve to 

deviate greatly from the normal pulse pressure representation. 

Blood pressure waveforms will show the effect of changes in the 

vascular system. Of particular concern in this respect is the determi­

nation of hypertension. Goldring and Chasis (6) define the essential cri­

terion for the diagnosis of hypertension as an abnormal elevation of the 

diastolic blood pressure. The diastolic blood pressure is the minimum 

pressure attained by the blood pressure waveform. Goldring and Chasis (6) 

show further that this rise in diastolic blood pressure is due to in­

creased arterial resistance in the arterioles. With the rise in diastolic 

blood pressure there is a concomitant elevation in the systolic blood 

pressure, usually to the extent that the pulse pressure is increased. 

Systolic pressure is the maximum pressure attained in the arterial system. 

A rise in systolic pressure without a marked increase in the diastolic 

pressure will result from systolic hypertension which is different in 

pathological physiology and in the clinical course of treatment from 

diastolic-systolic hypertension (6). 
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Therefore, with the proper interpretation, the blood pressure wave­

form can be of considerable use to the medical practitioner in the diag­

nosis of disease. The usefulness of the blood pressure waveforms to the 

medical researcher will be limited only by the degree to which they repre­

sent the true "in vivo" waveforms. 

B. History of Principles and Methods of Sphygmomanometry 

The first actual measurement of blood pressure was performed by 

Stephen Hales in 1733. Hales used a direct approach consisting of 

inserting into an artery a brass tube to which was attached a glass tube. 

The level to which the blood rose in the tube was the measure of blood 

pressure. In 1828, Poiseuille introduced the U-form of mercury manometer 

which was used in place of the brass pipe of Hales. The disadvantage of 

the mercury manometer was that the effect of the large diameter of 7 mm 

combined with the heavy weight of the mercury column produced an instru­

ment that was insensitive to small oscillations and pressure variations. 

The sensitivity was increased by the inclusion of a large reservoir and 

the reduction of the tube diameter by Mogendie in 1850. 

In 1847, Ludwig introduced a method for direct registration of blood 

pressure which is still used in present investigations in essentially the 

original form. This scheme consisted of placing an ivory float in the 

longer arm of the Poiseuille manometer; a writing arm was attached to the 

float and the movements of the mercury column were transmitted to a 

writing surface. 

The first indirect measurement of blood pressure in human beings was 
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made in 1834 by Julius Herrison. A hemisphere, the large surface of which 

was covered with a membrane, was connected to a graduated capillary tube 

and the entire system was filled with mercury. The membrane surface was 

placed on the radial artery and the oscillations of the column were ob­

served. Vierordt, in 1855, introduced the principle of measuring the 

amount of counter-pressure to obliterate the pulsations in a peripheral 

artery, as an index of the blood pressure. Marey improved this technique 

in 1857 by using a water filled cylinder, into which the forearm was 

placed, as a means of applying pressure to occlude arterial flow. The 

fluid of the cylinder was in communication with a recording tambour. As 

the pressure of the fluid was increased the pulse amplitude increased at 

first and then diminished, long before pulsations disappeared entirely 

the arm was seen to blanch, thus showing the vessels had been collapsed. 

Marey believed the point at which maximum oscillation occurred on the 

tambour was a true measure of the intravascular pressure. Later Janeway 

believed this point corresponded to diastolic pressure. Von Reckling­

hausen showed the external pressure which produced the mgylrnum oscil­

lation was actually closer to the mean blood pressure. The mean blood 

pressure is given (21, p. 22) as half the sum of the value of systolic 

and diastolic pressure. This is not strictly accurate as the mean value 

of a function P(t) over a time interval (a, b) is 

The value of M given by equation 1 will in general be nearer to diastolic 

1 M = 
fa — â 
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pressure than the value attained by dividing the difference between the 

systolic and diastolic pressure or pulse pressure by two. 

From 1878 to 1896 several different models of sphygmomanometers were 

developed; however, all were based upon the principles of Marey. In 1896, 

Riva-Rocci devised an apparatus consisting of an arm cuff which encircled 

the middle of the upper arm. As the pressure in the cuff was increased 

the radial artery was palpated at the wrist. As the oscillations disap­

peared, the level of systolic pressure was read on the manometer. In 1897 

an anaeroid manometer was attached to the cuff to measure pressure in 

place of the mercury manometer. The original arm cuff used was 5 cm wide 

and produced readings that were about 10 percent higher than expected. A 

cuff of 12 to 14 cm in width was introduced, which is still employed to­

day, and gives accurate readings. 

Korotkow first described the present technique used to determine 

blood pressure in 1905. This procedure is termed the auscultatory method 

and consists of using an arm cuff for compression of the radial artery, in 

combination with a stethoscope placed over the artery below the comr-

pressing cuff. Four distinct phases of sound are heard as the pressure in 

the occlusion cuff is decreased £vom occlusion. The sudden appearance of 

a clear faint tapping sound, growing gradually louder is termed phase I; 

phase II consists of the period during which the sound assumes a hissing, 

murmurish quality; phase III, the murmur disappears, and the sound becomes 

clear and louder; phase IV, the sound suddenly becomes muffled, and at the 

end of phase IV the sound has disappeared. Korotkow suggested that the 

systolic pressure be recorded at the beginning of phase I, and that the 
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diastolic pressure be recorded at the end of the fourth phase. Consider­

able disagreement over the correct interpretation of the fourth phase has 

resulted. Many investigators have found that the beginning of the fourth 

phase corresponds to the diastolic pressure found with the oscillometric 

methods when a sudden drop in maximal oscillation occurs. In 1939 the 

Committee on Standardization of Blood Pressure Readings of the American 

Heart Association recommended that this view be accepted as true measure 

of diastolic pressure. However, in 1951 the Council for High Blood 

Pressure Research of the Scientific Council of the American Heart Associ­

ation concluded that the point of complete cessation of sounds is the best 

index of the diastolic pressure (10). 

The current practice of using the point of sudden muffling of the 

sounds was based on comparisons with oscillatory criteria and on hemo­

dynamic data derived from studies of isolated arteries. A practice based 

on oscillatory criteria alone seems of dubious value as no general a-

greement has been reached regarding the oscillatory criteria of diastolic 

pressure. 

It should be noted that the present system of sphygmomanometry used 

depends on the auditory acuity of the investigator. A truly exact blood 

pressure measurement is not obtained, but an approximation (the value of 

which depends on the ability of the investigator) is made. 

The use of intra-arterial catheters for blood pressure measurements 

provides a means of directly measuring the blood pressure. This method 

has the advantage of being capable of continuous recording or metering. 

With the introduction of proper corrections for instrument configuration, 



www.manaraa.com

7 

the direct method of measurement can be expected to yield accurate re­

sults. The chief disadvantage of this method is the requirement of local 

surgical operative procedures due to the direct puncture of the arterial 

system. 
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III. CIRCULATORY SYSTEM 

A. Functional Anatomy 

The primary objective of the circulatory system is to transport ma­

terials to and ftom the tissues of the body (15). This involves the 

movement of many substances through the capillary walls into the cells of 

the tissues; it is dependent on the heart as a pump as well as the proper 

functioning of the arteries, arterioles, capillaries, veins, lungs, and 

numerous other organs and mechanisms of the body. The blood pressure 

waveform is created through the action of the heart pumping blood through 

the vessels of the circulatory system. The functional anatomy of the 

circulatory system will be reviewed with primary consideration given to 

the relation between the functions of the various parts of the circula­

tory system and the generation of the blood pressure waveform. 

In general terms, it may be said that all the organs, bones, and 

tissues of the body are part of the circulatory system; however, the chief 

components of the system are the heart, arteries, arterioles, capillaries, 

venules, veins, and the circulation fluid, the blood. Figure 1 is a dia­

grammatic representation of the circulation system. The action of each 

component of this system in the development of the blood pressure waveform 

will be considered. 

The function of the heart is to serve as a pressure pump to supply 

the energy required for the blood to flow through the circulatory system. 

The heart is essentially cardiac muscle divided into four chambers. The 

right and left atria serve as entrance chambers into which the blood flows 
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prior to entering the ventricles, which are the arterial pressure pumps of 

the circulatory system. The heart is divided by a septum into right and 

left halves. The two halves of the heart, each of which is composed of an 

atrium and ventricle, serve as two separate pumps operating in the same 

rhythm and phase. The right half of the heart serves to force the flow of 

blood through the lungs. The system composed of the right half of the 

heart and the lungs is the pulmonary circulation system. The system com­

posed of the left half of the heart, the arteries, and veins is the 

systemic circulation system. These two sub-systems compose the circula­

tory system. Each ventricle has an entrance and an exit valve. The tri­

cuspid valve is located between the right atrium and the right ventricle 

and is composed of three large flaps. The flaps are freely movable in the 

direction of inflow and are prevented from bulging and backflow during 

systole by the chordae tendinae and the papillary muscles. The bicuspid 

or mitral valve at the entrance of the left ventricle is similar to the 

tricuspid; however, it is composed of only two flaps. The exit valves 

from the ventricles are identical. These valves are composed of three 

cusps attached to the walls of the junction between the ventricle and 

artery. During systole of the ventricles the cusps are pressed against 

the walls of the aorta and pulmonary artery. At the beginning of the 

diastole or filling stroke the initial backward rush of blood into the 

ventricles from the arteries fills the cusps bringing them together to 

close the opening. It is of interest to note that there are no valves 

loceted at the entrance to the atria. Extensive backflow of blood is pre­

vented by the contractural waveform of the atria which forces blood from 
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the venous input area toward the ventricles (7). 

Contraction of the heart is initiated by the sino-atrial node or 

pacemaker. The pacemaker has the ability to initiate depolarization with­

out external influence. Depolarization of myocardium, causes the chambers 

of the heart to decrease in volume and thus force the blood into arter­

ies. The pacemaker is governed by nerve impulses brought to it by the 

vagus nerve or the sympathetic nerves. 

The flow of blood is thus seen to be from the venae cavae to the 

right atrium. Then through the tricuspid valve into the right ventricle 

from which blood is expelled at a systolic pressure of about 25 mm Hg 

(15). The blood then flows through the lungs and is oxygenated, and re­

turns to the left atrium where it passes through the bicuspid valve into 

the left ventricle. This ventricle is in effect a pressure pump which 

pumps oxygenated blood into the aorta. Left ventricle systolic pressure 

is approximately 125 mm Hg in the adult human of 25 to 29 years of age 

(10). The blood exits from the left ventricle into the aorta. 

The aorta is the chief vessel of the systemic system. The aorta 

distributes the blood through numerous branches to all parts of the body. 

The walls of the aorta and large systemic arteries are mainly composed of 

elastic fibers. The walls of the medium sized arteries contain more 

muscle tissue than the large systemic arteries. The function of this 

muscle tissue is to control the capacity of the circulatory system. The 

elasticity and contractural ability of the systemic arteries will be in­

vestigated further in a later section concerned with the hemodynamics of 

the circulatory system. 



www.manaraa.com

11 

The arterioles are the terminal portions of the arteries and contain 

large amounts of circularly arranged smooth muscle. Through the con­

traction of the smooth muscle the inside diameter of the arterioles may 

be varied. Consequently, through consideration of the increased re­

sistance to flow presented by the decreased diameter, the arterioles will 

greatly influence the rate of flow of blood from the arteries into the 

capillaries. This control of blood flow by the arterioles leads to the 

creation of an effective peripheral resistance (6). The smooth muscle of 

the arterioles is under a certain degree of continuous contraction or 

vasomotor tone. This tone is under the influence of the central nervous 

system. 

Blood flows from the arterioles through the capillaries to the veins. 

The capillaries are approximately 8yu in diameter and are extremely thin 

walled. The average diameter of a red blood cell in man is approximately 

7.5/a and the erythrocytes will therefore pass through the capillaries in 

a single column. 

The blood is returned to the heart from the capillaries through the 

veins. The veins differ from the arteries in three chief aspects. First, 

the veins are thin walled and contain blood at low pressure in the order 

of 0 to 10 mm Hg while the arteries are relatively thick walled and have a 

mean pressure of 100 mm Hg (2). Secondly, the veins possess cusplike 

valves which permit flow toward the heart but hinder back flow, the arter­

ies contain no valves. Thirdly, the veins are not elastic as are the 

arteries, but the veins do possess some muscle fibers which assist in the 

regulation of the capacity of the circulatory system to contain the 
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normal volume of blood 

B. Hemodynamics! Considerations 

The study of hemodynamics is concerned with movement of blood through 

the circulatory system. A systemic study of hemodynamics requires the 

consideration of several factors, some of which are heart rate, flow rate, 

blood volume, vessel elasticity, pulse pressure, effective peripheral re­

sistance, and vasomotor tone. Factors such as blood flow rate or intra­

arterial pressure are difficult to determine without at least a minor 

surgical operation. 

Blood is a fluid with considerable viscosity. The dynamic viscosity 

of a fluid is given by the equation 

where T is the intensity of the fluid shear, and /•* is the dynamic vis­

cosity, and dv/dy is the velocity gradient with distance across the flow 

(13). Equation 2 is a statement of laminar flow. The velocity gradient 

may be interpreted as arising from adjacent fluid layers sliding over each 

other with different velocities. The velocity distribution of a viscous 

fluid flowing in a cylindrical tube as developed in the usual manner (13) 

is given as 

2 X - v- shr 

3 
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where dp/ds is the pressure gradient along the axial length, r is the 

radius of a cylindrical fluid element, symmetrical about the axis of the 

tube, and D is the diameter of the tube. It is seen that the velocity 

distribution over the tube cross section will be in the form of a parabo­

loid of revolution. 

Blood is a non-homogenous fluid. It has been found that the flow of 

blood through small tubes, less than 1 mm in diameter, is altered from the 

laminar velocity distribution by two effects, the "sigma effect" and axial 

accumulation of cells (3). It was shown by Burton (3) that the inte­

gration for a differential laminae will not yield results agreeing with 

experimentally attained values. However, a summing process may be used to 

determine the value of effective viscosity in a tube of radius R with re­

spect to the effective viscosity of a tube of infinite radius 

^ uriytre Ramus 
/ RAOIUJ R ~ " Z 

ft ) 
where d is the diameter of particles in the fluid. A value of viscosity 

will be attained that will agree with the experimentally derived value. 

Axial accumulation of red cells is explainable as a result of a Bernoulli 

force which tends to cause the cells to move towards the center of the 

flow stream. The net effect of axial accumulation is to reduce the ef­

fective viscosity of the blood. Burton (3) states that axial accumulation 

does not play a significant role in the physiologic range of blood flow 

velocities. Therefore, the effective viscosity is a constant, although 

this constant is less than it would be if there were no axial accumu­

lation. 

The Foiseuille-Hagen law is stated as the following formula for flow 
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(3) 

APrr D4" 
5 9' 

where is the flow and A P is the pressure differential in the tube of 

diameter D and of length / with fluid viscosity/t . From equation 5 we 

may consider a resistance to flow Rf which will be 

6 « f f  
For Newtonian Fluids Rf will be a constant dependent on the values of 

A P and Q . However, for blood which is not Newtonian it was found that 

Rf does not remain a constant due to changes in and in D, the latter 

being the factor of greatest importance. 

The relationship of blood flow and blood pressure has been seen to 

depend on the properties of the blood vessel walls. A consideration of 

the relationships between the force per unit area tending to deform a ma­

terial or stress and the proportionate deformation of the material or 

strain, will aid in evaluating the properties of the blood vessels. As 

indicated in Figure 2, the stress acting in the direction of the cir­

cumference of the vessel wall is tangential tension, T. However, the 

measurable applied stress is the pressure which is applied in the radial 

direction. 

To find the relationship between pressure and tension all forces 

under consideration are assumed to be in equilibrium. Fp will be the 
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force due to pressure and will include the effect of intravascular 

pressure. Ft will be the force due to tension. The force due to pressure 

will be equal to 

where P is the applied pressure and Ap is the area the pressure acts upon. 

Ap will be seen from Figure 2 to be equal to the product of the length d 1 

and the arc length Rd& . The force due to tension equals 

where T is the tension and AT is the area the tension acts upon. The area 

acted upon is determined by the thickness S , the length àA, and the con­

sideration that there are two surfaces upon which the tension acts. 

Since all forces are assumed in equilibrium Fp may be equated to Pp 

providing proper correction is made to account for the different lines of 

action of these vectors. Therefore 

7 f> = PAp 

8 FT=TAT 

9 Fp=FrcS(W^ 

and upon simplification 

10 
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It is apparent that for a per unit of length of vessel the relationship 

between tension and pressure is both a function of vessel diameter and 

wall thickness. 

Strain £ , is defined as the change in dimension per unit dimension. 

Considering the vessel undergoing strain to be composed of a nonviscous, 

inertialess, linear, elastic material, Hook's law may be applied and the 

tension is written as 

11 T- Et 

where E is analogous to Young's modulus. The application of linear e-

lastic considerations to the calculation of blood vessel mechanical 

properties is based upon the assumptions of amgn strain and of constant 

volume of wall material with strain. 

Some studies (11) have shown that isolated strips of vessel have 

shown the wall to be visco-elastic, the strain being a function of the 

magnitude of the rate of change of stress as well as a function of the 

magnitude of stress. This effect may be written as 

12 7VO= £ £ + Kjf 

where T(%) is a function of time and K is the s train-viscous coefficient. 

Since a real material must possess the property of mass, its effect may be 

added 

13 TM* Et + K^r + ie 



www.manaraa.com

17 

where Mw is the mass of the wall. Prom equation 10 the relationship of 

pressure to strain may be derived as 

14 ptt) - £p & + Hp èJk. •+ Mjv__£ <L̂  
r 4* r d-e*-

Peterson et al (il) have shown that for a characteristic vessel 

where i~ 1 unit; % = 0.1 cm; R = 0.5 cm and the density p- 1 grany'cm?, 

the mass is 0.3 gram/unit length. Upon converting to c.g.s. units the e-

quivalent mass coefficient becomes 0.0003 which is stated (11) to be 

negligible with respect to the values of Ep and Kp obtained. Therefore 

equation 14 may be written as 

15 P(«= Ef> t + Kp^-

The solution of equation 15 by classical means (17) yields a general 

solution of the form 

t is. / 

e *' ff»>e * Jt * c* 16 
K p  

The exact form of equation 16 is dependent on the pressure function P(t) 

and the value of the constant C as determined by the conditions on ̂  . 

Peterson et al (11) have evaluated the pressure-strain elastic modu­

lus Ep and the pressure-strain viscous modulus Kp for several animals and 

has demonstrated the effects of age upon the pressure-strain relationship. 

It has been observed by maqy investigators (7, 10, 20, 21) that the 
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blood pressure waveform varies greatly as the pressure pulse traverses 

the arterial system. Figure 3 is a representation of the normal blood 

pressure waveforms as obtained by Wiggers (20). The top waveform was ob­

tained from the carotid artery, the center waveform from the subclavian 

artery, and the lower waveform from the radial artery. While all three 

waveforms are of the same general shape it will be observed that con­

siderable difference occurs in the systolic portion of each waveform and 

in the dicrotic notch which appears shortly after the systolic pressure 

has been reached. The dicrotic notch occurs in conjunction with the 

closing of the aortic valve. The effect of wave propagation may be ob­

served from Figure 3. The subclavian artery is more proximal to the 

heart than either the carotid or radial arteries. The radial artery, for 

measurements made at the wrist, is more distal to the heart than either 

the subclavian or carotid arteries. The waveform appears at the sub­

clavian artery measurement point prior to the time the waveform reaches 

either the carotid or radial measurement points. This effect will be in­

vestigated further in a following section. In this section the variation 

in shape of the pressure curve will be investigated. 

Stacy and Giles (18) used a method of waveform matching to arrive at 

an equation which would represent the waveform variation as the pulse 

traverses the arteries. Figure 4 shows the model used in deriving the e-

quation of waveform variation (18). The instantaneous upstream pressure 

waveform is given in terms of the instantaneous downstream pressure as 
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where ju is the viscosity and p is the density of incompressible fluid 

in the elastic tube of length L and radius R. The change in waveform of 

the pressure pulse is effected by changes in / , R, /^ , and Z. The 

quantities f> , L, and it are fixed for the system being considered. 

Equation 17 would be useful in computer simulation of waveform 

deformation in traversing the artery. The output pressure P0 could be 

operated upon using equation 17 and the result matched to Pi. This pro­

cedure would enable the attainment of coefficients for the equation. A-

nalysis of this type would aid to a more thorough understanding of the 

propagation of the blood pressure pulse and the actions of the circula­

tory system. 

C. Electrical Analog of the Arterial System 

In the field of Electrical Engineering considerable effort has been 

spent on the analysis of wave propagation on transmission lines. The 

transmission line may be considered as an analog of the circulatory 

system. Figure 5 indicates an ideal transmission line, or a line which 

does not possess components capable of energy dissipation. The arterial 

system, which in the circulatory system corresponds to a transmission 

line, does possess energy dissipating elements such as the muscle of the 

vessel wall and the viscosity of laminar flow. However, for the purpose 

of developing a simple analog to the circulatory system the arterial 

system will be considered to be lossless and yx will be considered as 

zero. It should be noted that the venous side of the circulatory system 

is considered as possessing zero pressure. 
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Aseltine (1) states the requirement for an analog to be that the e-

quations for each system be of the same form. The fundamental equations 

(12) for the analysis of a transmission line as shown in Figure 5a are 

av , ar 
18 

19 

These equations may be combined into an equation containing voltage alone 

or current alone. An equation containing voltage only is 

20 ^37 

An equation containing current only is 

L 

2i jLL - L C-

Peterson et al (il) have shown that a relationship between pressure and 

volume changes may be written as 

Using the value of as zero, the equation relating pressure and volume 

in an artery may be written as 

» ff-s. fr 
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Relating the flow, 4?, to volume changes by Q= di/dtj 

» S - -A- if 

The rate of change of flow with distance can be considered as the product 

of an elastic capacity factor C' and the rate of change of pressure with 

time. 

25 

The capacity factor relates the change in volume to a change in pressure. 

Combining equations 24 and 25 into one equation containing the 

pressure only 

* S - is £• 

An equation containing only flow may also be obtained 

-
Equations 26 and 27 are of the same form as equations 20 and 21, 

Therefore the transmission line may be considered an analog of the arteri­

al system. Table 1 shows the correspondence between quantities normally 

used in the analysis of arterial systems and those used in the analog. 

Equation 26 is a differential equation of a propagating waveform 
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whose solution may be found by classical means (5) as 

28 Pct,z) = G, U'f:) + £* 

where the velocity of wave propagation 

* - I f f  
Equation 28 indicates that the pressure may be considered as composed of 

a wave traveling in the positive z direction with velocity v and a wave 

traveling in the negative z direction with velocity v. 

The velocity of propagation may be computed by equation 29. C1 is 

determined from consideration of the change in flow for a differential 

segment of artery dz. The net change in flow for any instant will be 

dz and is merely that flow that is absorbed in the change in the 

volume of the vessel. Prom the cardiac ejection volume a net change 

in flow for one heart beat may be calculated. Assuming that for a 70 Kgm 

normal adult with a heart rate of 72 beats per minute the mean heart 

output is 5 1. p. min. (19, p. 720). may be calculated as 69.5 ml or a 

net flow change of 69.5 ml p. min. Assuming a systolic pressure of 130 mm 

Hg and a diastolic pressure of 80 mm Hg, the elastic capacity is 

-2 -3 
3Q Q'- 6?. 5" x '° - I.OS'xiO c#i3/<iyHe/£*>2 

(J30-80)(/3- S?X?.<?ù) 

The factor /°/TT is related to the mass of the fluid. For the example 
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under consideration the T term may be considered in conjunction with 

the effective arterial length to give a rrR^L term which is the volume 

factor V. Assuming 19 percent of the volume of blood is in the arterial 

system, a volume factor V of 950 ml is obtained. The density of blood may 

be assumed to be 1.03 gn^ml (3). The velocity of propagation is then 9.4 

m. p. sec. The measured propagation velocity is 9 m. p. sec. in normal 

man (2). Therefore, the close agreement between the measured and calcu­

lated values give substance to the use of a transmission line for an ana­

log of the arterial system. 

D. Extra-arterial Blood Pressure Waveform Determination 

A device to obtain the blood pressure waveform of the circulatory 

system by extra-arterial means must conform to several considerations 

based on the anatomy and hemodynamics of the body (8). The anatomical 

structure of the body is such that the large arteries are positioned in 

the medial part of the body and pass close to the body surface at only a 

few isolated points at which the pulse may be palpated. The aorta is 

medial in the body cavity and branches into the femoral arteries which 

continue to the legs. The femoral artery is located close to the body 

surface on the anterior side near the junction of the leg with the lumbar 

section of the body. The carotid artery is located lateral to the trachea 

and is near the surface on a small area of the neck. The temporal artery 

appears particularly close to the surface in the area in front of the ear 

lobe and anterior to the zygomatic arch. This area is easily located by 

the strong pulse palpated there. Strong pulses may be palpated in the 
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fir ont al branch of the temporal artery at the area superior and posterior 

to the eye and in the angular artery, lateral to the bridge of the nose. 

Other locations where arteries are particularly proximal to the body 

surface are the area where the subclavian artery passes beneath the 

clavicle; the wrist area where the radial artery passes proximal to the 

surface; and on the portions of the fingers and toes where the digital 

arteries are proximal to the surface. 

The areas where the pulse may be palpated as described above have 

two chief points in common. First, these areas are locations where the 

artery passes over a relatively hard surface, such as bone or the carti­

lage of the trachea. Secondly, these locations are marked by the absence 

of muscle tissue between the artery and the skin. These locations may 

then be characterized as having an artery surrounded by fascia passing be­

tween a bone structure and the skin. 

The temporal artery anterior to the ear lobe and the digital artery 

of the finger were selected as the chief artery locations to be used in 

obtaining the blood pressure waveform. These locations will be termed ar­

terial pulse areas. 
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IV. ACQUISITION OF BLOOD PRESSURE WAVEFORMS 

A. Systems of Obtaining Blood Pressure Waveforms 

The primary purpose of this Thesis is to obtain blood pressure wave­

forms from the human by extra-arterial means. Several secondary ob­

jectives are also to be considered. First, the device for obtaining the 

waveform must reproduce a representation of the waveform actually in ex­

istence within the artery. Second, the device used to obtain the waveform 

mast be small, easy to operate and be reliable. Third, the device should 

be capable of continuous blood pressure waveform recording for extended 

periods of time, in excess of an hour. During extended periods of re­

cording the subject should be permitted to function in a normal manner 

without being hindered or affected by the device. Fourth, the device 

should be able to produce an output signal which is free from the effects 

of muscle movement. The last consideration is that the system to obtain 

the waveform should utilize the capabilities of existing equipment wher­

ever possible. 

The major principle to be followed in obtaining blood pressure wave­

forms is the use of an applied balance pressure to occlude the artery and 

a membrane placed against the body surface to obtain the actual waveform. 

Historically, systolic and diastolic pressures have been determined using 

an adaption of this principle. In a previous section the anatomical con­

siderations of obtaining the waveform were presented. The application of 

the basic principle described above to the previously mentioned arterial 

pulse areas will be studied. The "floating form" of the blood pressure 
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waveform may be obtained from a membrane placed against the skin. The 

term "floating representation" is used to mean the pulse pressure waveform 

without reference to the actual numerical values of pressure of an intra­

arterial blood pressure waveform. The pulse waveform is transmitted to 

the membrane which is in communication to a device for pressure to an e-

lectrical signal conversion, or a transducer. The transducer output may 

be amplified and then applied as an input to an oscilloscope or oscillo­

graph. A "floating representation" of the blood pressure waveform is 

capable of being recorded either photographically or by recorder tracing. 

While it is desirable to obtain ordinate pressure values for the en­

tire blood pressure waveform, extra-arterial measurements will not provide 

true pressure readings from the calibration of the transducer pickup unit 

itself. The actual blood pressure of the artery under investigation is 

considerably higher than any pressures measured at the surface of the 

skin. It is necessary to actually calibrate the pressure system composed 

of the artery under investigation, the pickup and the recording device. 

The introduction of a standard pressure waveform into the arterial system 

enabled this system to be calibrated and the relative coefficient between 

the actual pulse pressure and the represented pulse pressure was es­

tablished. A standard pressure cannot actually be introduced into the 

artery. However, a standard pulse calibration may be effected by applying 

a pressure to the arterial pulse location, which will occlude flow in the 

artery. The standard pressure is then a pressure which will just balance 

the pressure in the artery; and thus cause the pressure waveform in the 

artery to be reduced to zero. The pressure which balances the maximum 
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pressure of the arterial system is systolic pressure. The pressure wave­

form may be monitored through the transducer-recorder system at a location 

downstream to the area of external pressure application. It should be 

noted that the application of this principle to a system containing a 

waveform varying at a lev frequency rate, approximately 14 cycles per 

minute in the human, about some mean pressure value in addition to the 

higher frequency variation of the waveform (approximately 72 cycles per 

minute in the human) will result in an approximation to the actual 

instantaneous systolic pressure. It is generally accepted however, that 

the approximation made to systolic pressure is a good measure of the actu­

al instantaneous systolic pressure in the artery. Goldring and Ghasis (6) 

reported values of systolic pressure measured by the auscultatory tech­

nique which average 10 mm Hg lower than values obtained by direct arterial 

measurement. If the pressure applied to the arterial pulse location is 

decreased from systolic pressure the pulse amplitude will increase. When 

the pressure in the artery is equal to the externally applied pressure, 

the artery will resume a normal cross-section configuration. Therefore, 

the pulse waveform obtained at the monitor location will be of a wiavlrmim 

amplitude. A measure of diastolic pressure is the pressure applied ex­

ternal ly that will just produce a maximum amplitude in the pulse waveform. 

Through determination of the systolic and diastolic pressures of the 

blood pressure waveform, the maximum and minimum values of the "floating 

waveform" or pulse waveform have been obtained. If the arterial trans­

duction and recording system is linear in the reproduction of the pressure 

waveform representation, pressures intermediate to the systolic and dias-
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tolic pressure may be obtained through linear interpolation of the re­

corded output curve. 

The method of calibration of the pressure waveform as described 

above has one chief disadvantage. The pressure waveform curve cannot be 

obtained during the determination of systolic pressure. Die entire pulse 

waveform is not obtained until the external pressure is less than dias­

tolic pressure of the blood. Furthermore, the actual process of obtaining 

the systolic and diastolic pressure values requires several pulse cycles. 

Therefore, it is desirable to calibrate only as often as required by vari­

ations in the actual pressure waveform being measured. 

Some of the possible design configurations which meet the above re­

quirements are shown in Figure 6. Figure 6a is a block diagram of a de­

vice which is placed against the arterial pulse area with the pickup dia­

phragm downstream with respect to the occlusion plunger, which is po­

sitioned to apply an occlusion force to the artery. A solenoid coil, 

whose coil current is proportional to the applied force, could serve as 

the occlusion motive unit. The coil current may be used as a measurement 

of the applied force. The pulse waveform is transmitted from the pickup 

diaphragm to the transducer, through the connecting fluid of the con­

necting chamber. The transducer output, P%(t), is a representation of the 

pressure function impressed on the diaphragm. Figure 6b is a block dia­

gram of a device similar to the one described above, except a pressure 

source and a transducer are substituted for the solenoid motive unit. The 

representation of the applied pressure, PgCt) is the output signal of 

transducer 2. 
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The requirement of a small, simple device suggests the use of only 

one transducer. Figure 6c is a block diagram of a device which requires 

only one transducer. The applied pressure which is transmitted to trans­

ducer 2 in Figure 6b is now transmitted to a connecting chamber and then 

to the single transducer. 

Figure 7 is a representation of the output waveform of the device of 

Figure 6c. At time A the pressure in the device is increased from the 

pressure required to obtain pulse pickup. As the external pressure is in­

creased the pulse waveform decreases in a manner described above. When 

the pulse waveform Pi(t) has been reduced to zero by the externally ap­

plied pressure P2(t) for an interval of time equal to the average period 

of the pulse waveform, the applied pressure is reduced. As the pressure 

is reduced to the pickup pressure the pulse waveform will reappear at time 

G and a pressure corresponding to the systolic pressure is noted. As the 

externally applied pressure is further reduced the pulse waveform will 

reach a maximum amplitude at time D. The pressure at this time will 

correspond to diastolic pressure. The external pressure is reduced to the 

pickup pressure at time E. 

It should be observed that the accuracy of the systolic and diastolic 

pressure determination will be effected by the rate of change of the ex­

ternal pressure P^(t). An externally applied pressure which more fully 

utilizes the characteristics of the arterial system is shown in Figure 8. 

The pressure is increased from the pickup level at time A to P2(B) at time 

B. The value of Pg(B) is established as a variable limit constant of the 

system. The pressure is reduced at a predetermined rate to ?g(C) which is 
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systolic pressure and corresponds with the appearance of the first cycle 

of the pulse waveform. The pressure is then rapidly reduced to Pa(D), 

another variable limit level of the system, after which the pressure is 

reduced at a slow fixed rate until the maximum amplitude of pulse waveform 

is attained. P%(E) corresponds to diastolic pressure and at time E the 

externally applied pressure is reduced to the pickup pressure level at a 

rapid rate. 

The filter shown in Figure 6c is necessary to remove the pulse wave­

form that is transmitted to the transducer even though the applied 

pressure exceeds the systolic pressure of the artery. A diagram of the 

artery and occlusion diaphragm are shown in Figure 9. The pressures in 

the occlusion diaphragm cause the artery to be occluded, however, a 

portion of the artery in contact with the diaphragm will still receive 

the blood pressure waveform. This section of the artery is marked (A) in 

Figure 9. The portion of the pressure waveform transmitted through the 

skin and diaphragm from section A could be interpreted erroneously as 

failure of the pressure diaphragm to have occluded the artery. The 

filter, constructed of a sma.13. bore tube (.58 mm inside diameter) and a 

distensible chamber, has been experimentally evaluated and the results of 

this evaluation will be discussed in a following section. 

An electrical circuit scheme which will perform the operation de­

scribed in Figure 7 with the applied pressure locus of Figure 8 is shown 

in Figure 10. The output of the transducer of Figure 6c is passed to a 

clamper and a smoothing circuit. The pulse waveform as actually recorded 

is considerably more reduced in amplitude with respect to the Pg(t) curve 
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than is shown in Figure 7. The clamper will remove the effect of the ap­

plied pressure. The clamped pulse waveform will be increased in ampli­

tude by the amplifier. The output of the amplifier is available for di­

rect recording of the pulse waveform, or "floating waveform". The ampli­

fier output is an input to a differentiation circuit. One section of the 

differentiation circuit will differentiate the pulse waveform, but permit 

only the differentiated waveform of the first pulse after occlusion to 

pass to the pulse shaper. The other section of the differentiator will 

obtain the envelope of the pulse waveform and differentiate this envelope 

and provide an output pulse to the pulse shaper when the rate of change 

of the envelope of the pulse waveform immediately following occlusion be­

comes zero. The pulse shaper will shape the two pulse inputs into rec­

tangular pulses of short duration. 

The output of the pulse shaper is combined with the output of the 

smoothing circuit, which is the same as Figure 8, and provides a waveform 

to the recorder as shown in Figure 11. The output from the smoothing 

circuit is fed to a comparison network which compares this waveform with 

the values of pressure established in the equilibrium limit control unit 

as explained in connection with Figure 8. The output of the comparison 

control unit is in the form of a control signal to the pressure source 

unit. A sequence timer provides an input to the pressure sources and 

serves to initiate the pressure control system. In the absence of the 

control inputs to the pressure source, the amplifier provides a waveform 

to the recorder similar to Figure 7, prior to the time A. 

The devices presented above require a means of conversion of the 
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pressure signal in the connecting chamber to an electrical output signal. 

The selection of a suitable transducer will be discussed in the following 

section. 

B. Transducer Selection 

A review of the various methods of pressure to electrical conversion 

revealed four general types of transducers. These transducers were re­

sistive strain gages, piezoelectric crystals, variable capacitance de­

vices, and differential transformer devices. A fifth scheme for trans­

duction, consisting of an oscillating mass whose frequency of oscillation 

is proportional to the mean pressure of an elastic vessel was derived and 

is presented in the appendix. 

In consideration of the requirements for a small transducer com­

ponent, requiring a relatively small amount of associated circuitry and 

capable of providing undistorted transduction, the resistive strain gage 

was selected as being preferable over the other methods of transduction. 

An evaluation of several resistive transducers was made. A resistive 

strain gage transducer capable of representing pressures to 50 mm Hg was 

located in the Veterinary Physiology Department at Iowa State University. 

This transducer will be identified by manufacturers type number which is 

P23B. This transducer will enable the recording of extra-arterial 

pressure waveforms but will not suffice to transduce the occlusion 

pressure. 

A miniature resistive strain gage transducer, available from Statham 

laboratories, Inc., was selected because of the values of pressure range, 
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natural frequency response, and output sensitivity. The dimensions and 

specifications of this transducer PG222 are shown in Table 2. This trans­

ducer is to be used in conjunction with a Tektronix Type 502 Oscilloscope 

having a direct coupled amplifier with sensitivity to 200 yu v/cm de­

flection. 

A device to record the pressure waveform should possess a flat 

frequency response over as wide a frequency range as technically feasible. 

Since it is planned to use a fluid medium to match the transducer to the 

arterial pulse area a damping effect due to the liquid flow will be iit-

curred. Therefore, a transducer with a high undamped natural frequency 

was chosen in order to obtain an essentially flat output response over a 

wide frequency range. 

The devices discussed above and shown in Figure 6 require two sepa­

rate transducer systems. The characteristics of the two transducers used 

are shown in Table 2. Figure 12 is a block diagram of the basic trans­

ducer system used. The pressure input to the transducer is converted to 

an electrical signal and displayed on a recording device. Excitation 

power is provided from the power unit. A zero reference level and a cali­

bration signal are provided by the zero balance and calibration controls 

respectively. Figure 13 is a schematic diagram of the power supply, zero 

balance control, and calibration control. Each transducer is essentially 

an unbounded strain gage connected in the configuration of a Wheatstone 

Resistance Bridge. The bridge circuit for the PG222 transducer also inr-

cludes two temperature compensating resistors which are in series with the 

input leads. An external precision variable resistor will be used as a 
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calibration control unit. This calibration resistor is shown as Rc and is 

only connected into the circuit when the key switch is depressed. The 

valve of Rc is calculated to reproduce an output representative of a given 

pressure applied on the transducer diaphragm. The transducer manufactur­

er, Statham Laboratories, Inc., suggests the following equation 

n „ i°ce C ? i?-
32 l'-'tï? 

where the values of E, Rc, Rin, and F are given in Table 2. The quantity 

N is the number of mm Eg acting upon the transducer diaphragm represented 

by the calibration resistor. The calibration resistors for a representa­

tive deflection of 100 mm Hg for the PG222 transducer and 20 ram Hg for the 

F23B transducer are given in Table 2. Two Power-Balance units have been 

constructed. These units were mounted on a test board with facilities for 

connecting a mercury manometer into a test system in parallel with the 

pressure transducers and waveform pickup devices. A hand pressure bulb 

was incorporated on this test board as a source of pressure. Figure 14 

shows this test board. The two power-balance units are shown on the rear 

section of the test board. The battery power supplies used for each trans­

ducer are external to this board and are not shown in Figure 14. 

The P23B transducer in the center foreground is connected to an ad­

justable arm rest. The PG222 transducer is shown placed on the arm rest 

pad. Figure 15 shows both the P23B and PG222 transducers. The scale 

marking in Figure 15 is inches. The larger transducer is the P23B trans­

ducer. The valves on the chamber end of the F23B transducer are to facili-
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tate rapid connection of test apparatus to the transducer. The PG222 

transducer is shown with an adapter to facilitate the connection of the 

transducer to the system to be evaluated. This adapter has the effect of 

increasing the transducer size, but in the interest of interchangeabilité 

and transducer protection the adapter will be used in all evaluations. 

The axial diaphragm displacement for the PG222 transducer is 3 by 10~3 

inches for full-scale deflection. This deflection represents a volume 

change of 14.73 by 10*"^ cubic inches. This volume change is accompanied 

by flow through the .05 inch diameter bore of the adapter. The pressure 

differential introduced by flow through the adapter is negligible for the 

frequency range of investigation. 

The transducer output signal is applied as an input to a recording 

device. Two recording systems are used. First, an oscilloscope-camera 

recording system consisting of a Tektronix 502 High Gain Oscilloscope and 

a Polaroid Scope Camera which is connected to the transducer output 

through the power-balancing unit. The Tektronix 502 Oscilloscope was se­

lected as a component of the recording system because of the low level DC 

amplifier contained in this unit. The amplifier is stable and has in­

herent open terminal noise of less than 50 ju v. A further attraction of 

this oscilloscope is the availability of a dual trace display through 

separate vertical amplifiers. This feature permits the simultaneous com­

parison of waveforms. The oscilloscope-camera recording system is uti­

lized in the experimental evaluation of systems and devices to obtain the 

blood pressure waveforms. 

Another recording system utilized in the experimental evaluation pro­
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cedure is a Sanborn Model 60 Recording Cart. This recorder has a low 

level preamplifier which permits the display of signals with a sensitivi­

ty of approximately 2.5 my/cm deflection. This recorder is also a dual 

trace device and permits the simultaneous recording of two independent 

waveforms. Figure 16 shows the Tektronix Oscilloscope and the Sanborn 

Recorder. Warner (19) has shown by means of Graphical Fourier Analysis 

of the blood pressure waveform obtained intra-arterially that the 10th 

harmonic of the blood pressure waveform is less than three percent of the 

amplitude of the fundamental. The fundamental frequency of the normal 

blood pressure waveform of the human is 1.2 ops. Therefore, the 10th 

harmonic is approximately 12 cps. The establishment of a value of maxi­

mum frequency response of 60 cps or approximately the 50th harmonic should 

provide a recording system capable of reproducing the essential infor­

mation of the blood pressure waveform as applied to the diaphragm of the 

transducer. The frequency response of PG222 transducer, the power balance 

unit, and the oscilloscope recorder is essentially undistorted. The 

Sanborn recorder has an output response that is flat to within 3 db for 

frequencies from 0 to 4-5 cps. The recording system composed of the trans­

ducer and Sanborn Recorder has a maximum useful frequency of 4-5 cps. This 

system was used to obtain system tracings similar to Figure 7. The maxi­

mum frequency of 45 cps will suffice for this application. The frequency 

response characteristics of the F23B transducer are essentially identical 

with the system characteristics presented above. 

One further component is used in the evaluation of the blood pressure 

measurement systems. This component is a low level Tektronix 122 Physio­
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logical Preamplifier with a gain of 1000. This preamplifier is capacitive 

coupled and is shown on the right of Figure 16. 
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V. EXPERIMENTAL PROCEDURES 

A. Arterial Pulse Area Evaluation 

An experimental evaluation of the systems described in the previous 

sections has been conducted. The concept of an arterial pulse area was 

investigated and the area most feasible for obtaining the blood pressure 

waveform has been determined. Devices for obtaining the blood pressure 

waveform have been constructed and evaluated. 

The first area of experimental investigation was the evaluation of 

the arterial pulse areas as described in part III section D. The arteri­

al pulse areas were studied to determine the relative strengths of the 

pulse waveform at the skin surface and the determination of methods of ap­

plying external occlusion pressure. 

The temporal arterial pulse area was investigated first. The pulse 

waveform was obtained by utilizing the F23B transducer. A rubber dia­

phragm held in a cylindrical diaphragm holder was placed against the skin 

over the temporal artery. The transmission of pulse waveform through 

various membrane configurations was evaluated. The diaphragm holder and 

the diaphragm configurations evaluated are presented in Figure 17. Rubber 

of approximately .1 mm thickness was used to form the diaphragm. The ana­

tomical structure of the arterial pulse area as shown in Figure 9 sug­

gested the use of a diaphragm as shown in Figures 17b or 17d. 

A test platform, as shown in Figure 18 was constructed. The cap and 

associated equipment are worn on the head. The sliding diaphragm holder 

jig is designed to be placed over the left temporal arterial pulse area. 
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The diaphragms shown in Figure 17 were evaluated by the following pro­

cedure. First, a diaphragm was placed in the holder. The holder was con­

nected to the F23B transducer by a 150 mm length of 7 mm inside diameter 

polyethylene tube. The tube has a wall thickness of 2 mm and exhibits no 

apparent deformation with pressure over the pressure range of the trans­

ducer. The holder and connecting tube were then placed into the jig. The 

cap assembly was placed on the head and the sliding jig positioned over 

the temporal area. The jig was adjusted against the skin by means of a 30 

thread per inch screw until a pulse waveform was obtained. A system of 

mirrors was constructed to permit self application of this jig. The de­

termination of pulse waveform was made by displaying the transducer output 

on the oscilloscope as described in the previous section. The jig was ad­

justed to obtain an output waveform representation of maximum amplitude. 

Waveforms obtained with the oscilloscope camera recording system for 

the experimental procedure described above are shown in Figure 19. The 

waveforms displayed are the waveforms of maximum amplitude. The associ­

ated values of pressure and output voltage are summarized in Table 3. An 

evaluation of the quality of waveform representation is difficult due to 

the lack of data for blood pressure waveforms obtained from the temporal 

artery either extra or intra-arterially. It will be noted the waveform 

recorded from the arterial pressure pulse area is only 6.1 mm Hg for the 

greatest waveform output. 

Two other important factors were evaluated at the temporal pulse 

area. Variations in the amplitude of pulse waveform with changes in pick­

up location were studied. It was found that a variation along a surface 
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path which was perpendicular to the artery resulted in a reduction of 

pulse waveform amplitude by almost 90 percent for a 1.5 cm change from the 

point of maximum pickup. The effect of muscle movement on the output of 

the transducer was pronounced. The masse ter muscle is located proximal 

and caudad to the temporal arterial pulse area. Consequently, as this 

muscle was exercised there was a resultant skin movement which was trans­

mitted to the transducer and produced a distorted output signal. The cap, 

platform, and transducer added to the effect of muscle movements. Their 

relatively large mass had the effect of creating false signals as the head 

was moved. Methods of applying an occluding pressure to the temporal ar­

terial pulse area were studied. 

An overall evaluation of the temporal arterial pulse area indicated 

that this area is not suitable for extra-arterial pulse measurements to be 

conducted on a normal, unrestricted subject using a miniature pickup 

transducer system. 

The angular arterial pulse area was investigated to determine the 

feasibility of utilizing this artery for blood pressure waveform measure­

ments. A jig similar to an eyeglass frame was constructed. This jig is 

used in conjunction with the cap described previously. 

The spheroidal membrane of Figure 17b was tested at this area. A 

maximum transducer output of approximately 100 ju v was obtained. This 

relatively low value of output voltage as compared with the output 

voltages of the temporal area and the possible injury to the eyes in the 

event of a blow against the eyeglass jig prompted the discontinuance of 

investigation on the angular arterial pulse area. 
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The digital arterial pulse area was investigated next. Specifically, 

the medial artery of the index finger of the left hand was studied. Conr-

sideration of the requirement for a small pickup device prompted design of 

a pickup diaphragm which would be more suited for finger application than 

the cylindrical holder used previously. Several finger pickup designs 

were considered. Figure 20 shows four of the basic finger pickup dia­

phragms that were constructed and tested. The pickup shown in Figure 20a 

was used to perform initial studies of the digital arterial area. This 

pickup was placed on the proximal section of the finger. It was observed 

that if the diaphragm was wrapped tightly around the finger and the 

transducer diaphragm system was filled with distilled water to a pressure 

of 30 mm Hg, an output waveform similar to that of Figure 21 was obtained. 

The pickup was wrapped around the finger so as to orient the luer con­

nector on the backhand side of the finger. The pickup was connected to 

the F23B transducer as shown in Figure 22. Care was taken to remove all 

air bubbles from the fluid connecting system. The transducer was con­

nected to the oscilloscope as described previously. Figure 21 shows the 

"floating representation" of the blood pressure waveform obtained from the 

digital artery. The maximum pulse waveform obtained with this pickup 

transducer system was approximately 2.5 mv. Figure 23 shows a comparison 

of the waveforms obtained from the temporal and digital pulse areas. 

Figure 23a was obtained with the spherical pickup and Figure 23b was ob­

tained with the pickup shown in Figure 20a. 

The anatomical structure of the digital arterial area permits the ap­

plication of an external occlusion pressure with an occluding bag bound 
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around the pulse area. 

B. Waveform Determination from the Digital Pulse Area 

The initial investigations of the digital pulse area prompted further 

consideration of the digital pulse area as an operating location from 

which blood pressure waveforms could be obtained. 

The standard experimental procedure was to place the left forearm of 

the subject on the arm rest, shown in Figure 14, and attach the device to 

obtain the blood pressure waveform to the index finger. A 15 cm standard 

occlusion bag was attached to the left upper arm in the normal clinical 

manner. Air pressure was supplied to the bag from the pressure system of 

the test board. Provision was made to monitor the application of pressure 

by attaching the PG222 transducer to the pressure system. As the pressure 

in the occlusion bag was decreased systolic and diastolic pressures were 

determined by the auscultatory method as described by Ebrotkow. 

The test board was used in determining the relative waveform trans­

mission of the pickups shown in Figure 20. The pulse waveforms as trans­

mitted from the digital pulse area through the pickups shown in Figure 

20a, b, c and shown in Figure 24a, b, c respectively. It will be seen 

that the pickup of Figure 20a exhibits properties of "ringing". Through 

repeated waveform determination, the pickup shown in Figure 20b was found 

to reproduce a waveshape that is essentially the same form as waveshapes 

presented by Wiggers (21). 

Utilizing the pickup shown in Figure 20b as a standard pickup, inr-

vestigations were conducted to determine the most satisfactory method for 
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obtaining the values of pressure which correspond to the ordinate values 

of the "floating representation" of the blood pressure waveform. The pro­

cedure used was to place an occlusion cuff around the proximal phalanx and 

the pickup around the middle phalanx. Both the pickup and occlusion cuffs 

were wrapped securely with a nonstretchable nylon bandage and fastened 

with standard medical adhesive tape. This procedure will permit normal 

flow in the digital artery until the pressure in the occlusion cuff is in­

creased to effect occlusion. This method of attaching the occlusions cuff 

and pickup is shown in Figure 25. 

The first step in the investigation of arterial occlusion with the 

finger cuff was to establish a procedure by which systolic and diastolic 

pressure could be obtained from the "floating representation" of the pulse 

waveform in combination with the externally applied occlusion pressure. 

Systolic and diastolic pressures for several subjects were taken by the 

auscultatory method and recorded. The pressures in the occluding cuff of 

the upper arm were recorded in conjunction with the pressure pulse wave­

form. An example of this recording is shown in Figure 26. The time 

markings represent seconds. The pressure pulse recording is the lower 

trace. The occlusion pressure is shown in the top recording trace. The 

erratic variations in this trace were due to noise from the recorder pre­

amplifier. 

At a later time, without consultation of the values of systolic and 

diastolic pressure obtained by the auscultatory method, systolic and dia­

stolic pressure of the recorded pulse waveform were read from the 

recordings. Systolic pressure was recorded as the pressure in the oc-
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elusion cuff at the instant the first pulse of the pulse waveform ap­

peared. Diastolic pressure was recorded as the pressure corresponding to 

the instant the pulse waveform reached a maximum peak to peak amplitude. 

The pressure at which the dicrotic notch first appeared in the waveforms 

was also recorded. Table 4 is a compilation of the data of several tests. 

Over 30 pressure calibration runs have been performed. Table 4 shows sys­

tolic pressure determined from the waveform recordings to average 1.3 per­

cent lower than values obtained by the auscultatory method. The variation 

in diastolic pressure is 5.9 percent lower for values obtained from the 

waveform recordings. 

It should be noted that the values of systolic and diastolic pressure 

are for a particular instant of time. The determination of the systolic 

pressure by both the auscultatory and waveform methods provides values of 

systolic pressure that are in close agreement. A possible explanation for 

the difference between the values of systolic pressure rests in the obser­

vation that the mean blood pressure varies in direct relationship with the 

breathing rate. This variation in mean pressure causes a variation in the 

pulse waveform representation. This breathing effect on the mean pressure 

has been observed on several recordings. The average period of the 

breathing response is approximately 4.5 seconds. Since the time required 

to obtain a waveform representation such as Figure 26 is in excess of 5 

seconds, the effects of respiratory pressure changes will be present on 

the waveform. Figure 27 shows the variation in digital pulse waveform 

with respiration. If the occlusion pressure is rapidly decreased from 

systolic pressure, the instant at which the pulse waveform actually at­
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tains a maximum value is difficult to decern using the recorded curve. 

An erratic decrease in pressure will also produce a waveform that is not 

useable in the determination of diastolic pressure. A pressure release 

valve is incorporated in the pressure source mechanism to insure a smooth 

decrease in pressure. A combination of waveform distortion through the 

variation of mean pressure due to respiratory effects and to the erratic 

decrease of the occlusion pressure will explain the differences between 

measurements by the auscultatory and waveform methods. If the rng-rimum 

amplitude of the waveform is to be taken as a measure of the attainment of 

diastolic pressure, the effects of the mean pressure changes must be cor­

rected. The data in Table 4- has not been corrected for mean pressure 

changes. 

The schematic diagram shown in Figure 10 incorporated a circuit which 

will correct for mean pressure changes. This circuit will produce a 

marker pulse corresponding to the time at which the pulse waveform reaches 

maximum amplitude. This marker pulse can be correlated with the occlusion 

pressure recording to obtain diastolic pressure. 

While the method of calibrating the pickup pulse waveform represen­

tation as described above does not actually compare pickup pressures with 

true intra-arterial pressures, this method does compare the pickup data 

with values of pressure as obtained in normal clinical practice. An actu­

al intra-arterial pressure correlation would require a cannulation of the 

artery simultaneously with the pickup measurement. The facilities needed 

to perform this correlation calibration on a human are not available at 

Iowa State University. One of the original specifications for a device to 
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obtain waveforms was that the device be useable to the medical practition­

er; therefore, a calibration in terms of measurements that are familiar to 

the practitioner and that are tabulated as diagnostic aids (10), should 

ultimately be the most satisfactory calibration. 

Utilizing the criterion for systolic and diastolic pressure determi­

nation developed above, the pressure in the occlusion cuff around the 

proximal phalanx was varied from above the anticipated occlusion pressure 

to zero pressure. The occlusion cuffs tested are shown in Figure 28. The 

narrow cuff of Figure 28 has a deflated width of 19 mm and the wide cuff 

has a width that varies from 15 mm to UO mm. It was found that pressure 

measurements made with the narrow occlusion cuff were approximately 30 mm 

Hg higher than measurements made by the auscultatory method. Measurements 

made with the wide pressure cuff were approximately 25 mm Hg lower than 

auscultatory values. An occlusion cuff width of 25 mm, measured directly 

over the digital artery, produced systolic and diastolic pressures that 

corresponded favorably with auscultatory measurements. The results of 

these measurements are shown in Table 5. A recorded waveform for this 

measurement comparison test is shown in Figure 29. It was observed that 

all measurements made using a finger occlusion cuff approximately 25 mm 

wide yielded values of systolic pressure that averaged 0.5 percent higher 

than the auscultatory measurement. Diastolic pressure measurements aver­

aged 2.5 percent lower than values determined by the auscultatory method. 

Figure 30 shows the "floating waveform" as obtained with the F23B trans­

ducer. The marker pulse represents one second of elapsed time. 
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G. A Single Transducer Digital Pickup 

The small size and the increased pressure limit of the PG222 trans­

ducer designate it as being more suitable for use in a waveform determi­

nation system than the P23B transducer. A chief disadvantage to this use 

is the relative low output signal level as compared to the P23B trans­

ducer. Figure 31 shows the response of both transducers to the same wave­

form input. The top curve is for the PG222 transducer, and represents a 

signal level of approximately 900^ v. The lower curve is the signal 

output of the P23B transducer and represents 2.6 mv. Excellent corre­

spondence is noted between both transducer waveforms and published pulse 

waveforms (20). 

The low level of the pulse waveform output signal from the PG222 

transducer will be amplified by the Tektronix 122 "Low Level Preampli­

fier" . A coupling capacitor of 1 p. f was selected to provide a time 

constant of one second when combined with the gird assistances of the 

amplifier. The top curve of Figure 32 shows the output of the PG222 

transducer as an input to the preamplifier and the preamplifier output 

waveform of the preamplifier on the bottom curve. There exists a high 

degree of correlation between both waveforms as any distortion introduced 

by the preamplifiers is extremely small. 

The use of the preamplifier in conjunction with the PG222 transducer 

provides a means of determining pulse waveforms and pressure information 

from the same transducer. Consideration was given to constructing a 

system as shown in block diagram form in Figure 6c. This construction is 

shown in Figure 28a. The model shown on the left of Figure 28a was con-
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structed with 10 by 15 ram pickup and occlusion bags. The bags were con­

nected internally by 17 mm of .58 mm inside diameter polyethylene tubing. 

The models were constructed using liquid latex. The transducer was at­

tached to the top tube on the right side of the device. Provision for 

filling the device with fluid and for removing trapped air was incorpo­

rated in the middle tube. The bottom tube on the right was used to supply 

air pressure to the inflatable pressure chamber of the device. In 

practice the bag was placed against the digital arterial pulse area and 

bound with a nylon bandage. The fluid in the pickup and occlusion bags 

formed a closed system with the transducer diaphragm. As the pressure in 

the pressure chamber increased both the occlusion and pickup bags were 

forced against the arterial pickup area. Ideally, the mean pressure in 

the pickup system would be a measure of the applied pressure. When the 

pressure reached the value of systolic pressure the occlusion bag should 

have occluded the artery. There would be no pressure pulse transmitted 

through the pickup bag. The pressure pulse which is transmitted through 

the occlusion bag should be filtered. Only a mean pressure, corresponding 

to systolic pressure should be transmitted to the pickup bag and then to 

the transducer. It was found that the pressure of complete occlusion 

which corresponded to systolic pressure was 50 mm Hg higher than the value 

obtained by the auscultatory method. The filter system of this device 

failed to smooth the pulses transmitted through the occluding bag as de­

scribed in a previous section. However, as the pressure within the oc­

clusion bag increased above systolic pressure the tension on the bag 

surface also increased with a resultant decrease in the transmitting 
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ability of the effective occlusion diaphragm. Thus, the pulse waveform 

transmission decreased and an apparent systolic pressure was attained. 

The devices shown in Figure 28a failed to provide a reliable means of ob­

taining the blood pressure waveform. 

Several filter devices were investigated. Two such devices are shown 

in Figure 28b. These filters consisted of a series combination of a .30 

mm tube, an elastic expansion chamber, a .58 mm tube, and a second elastic 

chamber. This filter is equivalent to two stages of an RC filter. It was 

observed that a tube of small enough diameter to damp out the effects of 

pulse waveform variations with the associated small resultant flow of 

these variations would introduce considerable error in the transmission of 

the mean occlusion pressure with its relative high resultant fluid flow. 

A system which is based upon the schematic diagrams of Figure 6c but 

which is free of the deterious effects of pulse transmission through the 

occlusion bag is shown in Figure 33. The pickup membrane connected to the 

transducer adapter and PG222 transducer is shown on the right of Figure 

33. The occlusion bag is shown on the left. The middle bag serves to 

transmit the occlusion pressure from the occlusion bag to the pickup 

transducer system. In operation, the occlusion bag was placed around the 

proximal phalanx and wrapped by a nonstretchàble nylon bandage. The 

pickup and transducer form a closed system filled with distilled water 

which was placed over the digital artery on the medial section of the 

middle phalanx. The second bag was wrapped around the pickup diaphragm 

and secured with nonstretchàble nylon bandage. The two bags are con­

nected by two .58 mm polyethelyene tubes connected in parallel to a 10 cc 
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syringe which is shown in the far left of Figure 33. A total of 130 cm 

of two parallel .58 ram. inside diameter tubes connect the two bags. 

As the pressure in the occlusion bag was varied, corresponding vari­

ations in pressure of the bag placed over the pickup diaphragm resulted. 

The variation of pressure in the bag around the pickup diaphragm was 

transmitted to the transducer as a mean pressure change. Pulse variation 

due to pulse pressure on the occlusion bag was effectively filtered 

through the use of an air transmitting medium and the long connecting 

tubes. The pressure in the occlusion bag subsystem was controlled by 

changing the position of the plunger of the syringe. 

Several tests were conducted using the system described above. 

Figure 34 is a representation of the waveforms obtained with this system. 

Figure 35 shows the system applied to the index finger of a test subject. 

Figure 34a shows the output of the PG222 transducer after amplification by 

the preamplifier. This curve is displayed through a capacitive coupled 

amplifier and permits the waveform to be displayed without the effects of 

changes in mean pressure. The direct transducer output is shown in 

Figure 34b. The occlusion pressure was increased to 140 mm Hg at which 

time the pulse waveform output was zero. As the occlusion pressure was 

decreased to the level of systolic pressure the pulse waveform remained 

zero. At 105 mm Hg, which corresponds to systolic pressure, the curve of 

Figure 34b shows an initial pulse waveform. 

Criterion for the measurement of diastolic pressure has not been com­

pletely established. The use of a criterion based on the maximum pulse 

amplitude is not applicable as shown by Figure 34b. The amplitude of the 
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pulse waveform is dependent on the arterial pressure pulse in addition to 

the pressure of the occlusion subsystem. Diastolic pressure of the 

subject used to obtain Figure 34 was 70 mm Hg as measured by the aus­

cultatory method. An approximate determination of diastolic blood 

pressure was made using the criterion that diastolic pressure was attained 

when the pulse waveform showed no further waveform distortion with release 

of the occlusion pressure. This criterion requires comparison of subse­

quent pulse waveforms. Due to the small value of the slope of the blood 

pressure waveform near the point at which diastolic pressure is attained, 

the actual comparison of waveform is relatively inaccurate and deviations 

in pressure reading of 20 percent from those obtained by the auscultatory 

method have been obtained. The comparison of the pressure waveforms can 

be made by taking the derivative of the section of the pressure waveform 

from the dicrotic notch to the point of diastolic pressure. The instant 

at which this derivative attains a constant value corresponds to diastolic 

pressure. The circuitry to perform this operation has not been con­

structed. 

As shown in Figure 35, the combined pickup, occlusion, and trans­

duction device is small. The output signal is essentially free from 

sperious signals due to muscle movement. An even smaller, more compact 

device is possible if the transducer is attached directly to the pickup 

diaphragm without using the adapter. The location of the syringe or 

pressure source is not critical and an extension tube could be connected 

between the syringe and the tee connector of the occlusion bags. 
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D. Observations of Experimental Results 

Several interesting results were observed in compiling the data pre­

sented above. Ten subjects were used in the above tests. Several experi­

mental determinations were made on each subject. In all cases it was ob­

served that the initial blood pressure readings were higher than those 

readings taken after the subject became accustomed to the equipment and 

procedures. Systolic blood pressure readings were observed to vary 

greatly if the subject was permitted to become exposed to situations that 

produced tension or anxiety. On several occasions the systolic pressure 

readings were found to raise as much as 10 percent after the injection of 

a provoking or embarrassing question to the subject. This result suggests 

the use of above apparatus as a "lie detection" device to replace the aus­

cultatory device described by Marston (9). 

It was observed that if the occlusion pressure was maintained in ex­

cess of the systolic pressure a decay occurred in the mean level of pickup 

representation tracings taken with a pickup diaphragm placed on the finger 

and an occlusion cuff placed on the arm. If the occlusion pressure is 

maintained for a period of 10 seconds the decay will attain an essentially 

constant level. The shape of the decay curve suggests an exponential "Çype 

decay similar to the discharge of a capacitor. It has been found that as 

the occlusion pressure is released to below systolic pressure the mean 

pressure level of the pulse representation will increase to a maximum at 

diastolic pressure, which is in excess of the normal level before the ap­

plication of the occlusion pressure. The mean pressure level will return 

to the normal pressure level as the occlusion pressure is reduced to zero. 
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In waveforms obtained in finger occlusion tests a positive variation 

of the mean pressure level has been observed if the occlusion pressure is 

maintained in excess of the systolic pressure. The variation in the pulse 

representation appears similar to the charging of a capacitor. As the oc­

clusion pressure is decreased, the waveform returns to the same mean level 

as attained prior to occlusion. 

Figure 36 shows the result of a simultaneous representation of an 

Electrocardiogram and blood pressure waveform. The apparent velocity of 

waveform propagation may be obtained using an approximate vessel length of 

1 m between the digital arterial pulse pickup area and the left ventricle 

of the heart, and a time lag of .14 seconds between the polarization wave­

forms of the ventricle, as obtained from Figure 36. The apparent velocity 

of propagation can be calculated as 7.15 mps as compared with the 

published value of 9 meters per second (2). 

The variation in mean pulse pressure with respiration changes is 

shown in Figure 37. At time A a deep inspiration was taken. At time B 

the inspiration was released and normal breathing resumed. The mean 

pressure corresponds approximately to the level of the dicrotic notch as 

shown in Figure 37. The dicrotic notch appears as a broad line through 

the pulse waveform of Figure 40. The time scale of this figure is five 

seconds per division. Variations in the heart rate are obtainable by ob­

serving the change in the period of the pulse waveform. Clynes (5) has 

examined the factors concerned with respiratory control of the heart rate. 

Figure 40 appears to be a representation of the effects of respiration. 

It was observed that the value of pressure corresponding to the ap~ 
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pearance of the dicrotic notch remained essentially constant for each 

subject while the value of systolic pressure varied over the test period. 
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VI. CONCLUSION 

An investigation of the classical methods of Sphygmomanometry has 

been made. The circulatory system has been reviewed to determine the ana­

tomical and hemodynamics1 considerations of blood pressure waveform de­

termination. A system for obtaining the "floating representation" of the 

pressure pulse has been designed, constructed, and evaluated. Two systems 

for obtaining the blood pressure waveform by extra-arterial means have 

been designed, constructed, and tested. 

A waveform representation having excellent correspondence to 

published waveforms (20) has been obtained. Devices for obtaining the 

blood pressure waveform including the reference values of systolic and 

diastolic pressures have been constructed. These devices are small, 

easily applied, and essentially free of the effect of body movement. The 

systems developed have been used in cyclic pressure determinations for 

periods of 90 minutes without deterious effects. 

One system of waveform determination requires the use of two pressure 

transducers. With this system both systolic and diastolic pressures can 

be determined and correlated to the "floating representation". The second 

system is extremely compact, utilizes one pressure transducer, and pro­

vides an accurate method for determining systolic pressure. Circuitry in 

addition to a recording system will be required for the satisfactory de­

termination of diastolic pressure. 
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IX. APPENDIX 

A measure of the mean pressure within an elastic vessel can be ob­

tained by applying an oscillating mass to the external vessel walls and 

observing the resultant frequency of oscillation. Figure 38 shows an e-

lastic tube of radius a. The dashed line tube is the resultant form of 

the elastic tube when the vessel wall is deformed a radial distance by two 

parallel planes. This deformation would correspond to forcing a plane 

surface against vessel over an axial length i and for a radial distance 

y, or a reduction in the original diameter in the z direction of 2 Y . 

The force to cause the deflection ^ may be written as 

1 

where P is the pressure inside the vessel and J is the length over which 

the force is applied. Assuming that the undeformed section of the vessel 

maintains the original circular curvature, the area of deformation may be 

written as 

2 A = 23. (JR ~ 

where a is the radius and sr is the angle measured as shown in Figure 38. 

F may be written as 

3 p= pJZzCf 

Utilizing the trigonometry relationships of the figure, equation 3 may be 
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written 

4 F s  M ? *  ( f  - S,h V/- ~)) 

An effective spring constant k may be obtained by writing h- . 

Differentiating equation 4- with respect to / 

2P/ 
K = 

vA- C'-f/ 

The undamped natural frequency for an oscillating spring-mass system 

is given (l) as 

i -J-
k_ 

M 

where M is the mass. The undamped natural frequency may be expressed in 

terms of the pressure within the elastic vessel by equation 5 

f# = 

Figure 39 is a plot of the variation of F/2P^a as a function of 

y/a. An essentially linear portion of the resultant curve occurs about 

the value of y/a = .5. 

Assuming a pressure of .142 atmospheric pressure, which corresponds 

to 108 mm Hg, an effective deformation length of 1 cm and a 5 gm mass, the 

undamped natural frequency for a deformation Y- a/2 can be calculated as 

42 cps. 
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2. FIGURES 
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Figure 14. Test assembly 

Figure 15. P23B and PG222 transducers 

Figure 16. Recording equipment and Tektronix preamplifier 
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Figure 18. Temporal test platform 

Figure 19. Temporal arterial pulse area 
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Figure 21. Digital pulse area "floating" -waveform representation 

Figure 22. Test assembly for obtaining the digital "floating" 
waveform representation 

Figure 23a. Temporal "floating" waveform representation 

Figure 23b. Digital "floating" waveform representation 



www.manaraa.com

75 



www.manaraa.com

Figure 24a. Waveform obtained with digital pickup A 

Figure 24b. Waveform obtained with digital pickup B 

Figure 24c. Waveform obtained with digital pickup C 

Figure 25. Digital occlusion and pickup diaphragms 
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Figure 26. Blood pressure waveform determined with a brachial occlusion cuff and a digital pickup 
diaphragm 

Figure 27. "Floating" blood pressure waveform showing the effect of respiration 
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Figure 28a. 
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Filter devices 

Occlusion diaphragms 
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Figure 29. Blood pressure waveform determined with digital occlusion and pickup diaphragms 

Figure 30. Digital "floating" waveform representation as recorded by the Sanborn Recorder 
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Figure 31. Comparison of the output waveform representation of the 
P23B and PG222 transducers when subjected to the same 
input waveform 

Figure 32. Comparison of input and output waveforms of the Tektronix 
122 preamplifier 

Figure 33. Single transducer device for obtaining the blood pressure 
waveform 
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Figure 34. Blood pressure waveform obtained with the single 
transducer device 

Figure 35. Single transducer device applied to the index digit 
of subject 
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Figure 36. Simultaneous recording of electrocardiogram and pressure 
waveform 

Figure 37. "Floating" waveform representation showing the effect of 
respiratory changes 
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FIGURE 38. MODEL OF AN ELASTIC TUBE WITH 

NEGLIGIBLE WALL THICKNESS 
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FIGURE 39. GRAPH OF THE VARIATION OF 

AS A FUNCTION OF 3 
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Table 1. Quantities for an arterial system analog using a 
loss-less transmission line 

Arterial System Transmission Line 

Quantity Symbol Quantity Symbol 

Pressure P Voltage V 

Flow Q Current I 

Volume V Charge q 

Capacitance factor C1 Capacitance C 

Fluid factor P/ Inductance L 



www.manaraa.com

93 

Table 2. Characteristics of pressure transducers used in the devices 
described 

Quantity- Units P23B 
Transducer 

PG222 
Transducer 

Dimension cm 7.6 x 2.8 x 2.8 1.42 x .78(Dia) 

Weight gm 453 3 

Pressure range mm Hg 0 to 50 0 to 516 

Input resistance, Rin ohms 334.0 198.2 

Output resistance, R0 ohms 334.0 198.1 

Calibration factor, F yuv/mm Hg 360.0 40.2 

Excitation, E volts 12 3 

Calibration resistor, Rc ohms 11,310 for 
20 mm Hg 

36,900 for 
100 mm Hg 

Temperature correction °F not corrected -65 to 250 

Approximate natural 
freauencv 

cps 1000 7000 



www.manaraa.com

94 

Table 3. Temporal arterial pulse area evaluation 

Waveform of Diaphragm Shape Maximum Amplitude Waveshape 
Figure 23 of Figure 17 mv mm Hg Evaluation 

Top Spherical 2.2 6.1 Good 

Center Taut 0.1 0.28 Poor 

Bottom Button 0.6 1.7 Fair 
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Table 4. Comparison of auscultatory and waveform methods for obtaining systolic and diastolic 
pressure 

Pressures by the Pressures by the Percentage Difference 
Auscultatory Method Waveform Method 

Test Systolic Diastolic Systolic Diastolic Dicrotic Notch Systolic Diastolic 
Subject in mm Hg in mm Hg in mm Hg in jm Hg in mm Hg 

1 105 65 109 60 70 3.8 —8.2 

2 321 59 119 58 60 -2.5 1.7 

3 108 72 111 60 88 2.8 -16.7 

4 118 70 118 65 75 0 -7.1 

5 112 70 105 60 60 -5.8 -14.2 

6 101 70 95 70 70 -5.9 0 

7 110 78 110 75 90 0 -3.8 

8 100 78 100 80 85 0 2.6 

9 101 70 98 60 75 -3 -14.2 

10 118 70 115 70 90 -2.5 0 

Average -1.3 -5.9 
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Table 5. Comparison of systolic and diastolic pressure determined by arm and digit occlusion 
cuffs 

Pressures with Pressures with Percentage Difference 
130 mm Arm Cuff 25 mm Digit Cuff 

Test Systolic Diastolic Systolic Diastolic Dicrotic Notch Systolic Diastolic 
Subject in mm Hg in mm Hg in mm Hg in mm Hg in mm Hg 

1 103 70 105 65 90 1.9 -7.1 

2 110 78 110 75 90 0 -3.8 

3 118 72 120 70 95 1.1 -2.9 

4 118 70 117 68 75 -0.8 -2.9 

5 98 60 98 62 70 0 3.3 
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